Zero-dimensional Dugundji spaces admit profinite lattice structures
نویسنده
چکیده
We prove what the title says. It then follows that zero-dimensional Dugundji space are supercompact. Moreover, their Boolean algebras of clopen subsets turn out to be semigroup algebras.
منابع مشابه
Dugundji systems and a retract characterization of effective zero-dimensionality
In a previous paper, the author considered several conditions for effective zero-dimensionality of a computable metric space X; each of the (classically equivalent) properties of having vanishing small or large inductive dimension, or covering dimension, or having a countable basis of clopen sets, can be interpreted as multi-valued operations, and the computability of these operations was shown...
متن کاملHomogeneous pseudo-Riemannian structures of class T2 on low-dimensional generalized symmetric spaces
We give a contribution about the study of homogeneous pseudoRiemannian structures on a type of homogeneous spaces, namely, the pseudo-Riemannian generalized symmetric spaces of low dimensions. It is well known that generalized symmetric Riemannian spaces admit homogeneous structures of the class T2 ⊕ T3. The same property holds in the pseudo-Riemannian context. The aim of the present paper is t...
متن کاملGeneralizations of small profinite structures
We generalize the model theory of small profinite structures developed by Newelski to the case of compact metric spaces considered together with compact groups of homeomorphisms.
متن کاملProfinite Heyting Algebras and Profinite Completions of Heyting Algebras
This paper surveys recent developments in the theory of profinite Heyting algebras (resp. bounded distributive lattices, Boolean algebras) and profinite completions of Heyting algebras (resp. bounded distributive lattices, Boolean algebras). The new contributions include a necessary and sufficient condition for a profinite Heyting algebra (resp. bounded distributive lattice) to be isomorphic to...
متن کاملA COMMON FRAMEWORK FOR LATTICE-VALUED, PROBABILISTIC AND APPROACH UNIFORM (CONVERGENCE) SPACES
We develop a general framework for various lattice-valued, probabilistic and approach uniform convergence spaces. To this end, we use the concept of $s$-stratified $LM$-filter, where $L$ and $M$ are suitable frames. A stratified $LMN$-uniform convergence tower is then a family of structures indexed by a quantale $N$. For different choices of $L,M$ and $N$ we obtain the lattice-valued, probabili...
متن کامل